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Figure 1. We propose a new few-shot object detection (FSOD) benchmark which embraces the challenge of aligning multimodal foundation
models to target concepts with vision and language. On the left, we describe the standard setup: methods pre-train on base classes
(with many examples per class) and then fine-tune on K-shots of novel (and optionally base) classes. On the right, we describe our
proposed setup: Given the scale and often private nature of data used to train VLMs, it is impractical to maintain a split of base and
novel classes. Instead, one should directly fine-tune VLMs on K-shots of the target classes (and evaluate only those target classes).
Importantly, VLMs allow us to exploit additional language cues such as class names and descriptions for fine-tuning. We show that such
“zero-shot” language cues already outperforms state-of-the-art methods without any fine-tuning. However, such foundational VLMs can
be significantly improved by aligning them with target concepts (Fig. 2).

Abstract

Few-shot object detection (FSOD) benchmarks have ad-
vanced techniques for detecting new categories with lim-
ited annotations. Existing benchmarks repurpose well-
established datasets like COCO by partitioning categories
into base and novel classes for pre-training and fine-
tuning respectively. However, these benchmarks do not re-
flect how FSOD is deployed in practice. Rather than only
pre-training on a small number of base categories, we ar-
gue that it is more practical to fine-tune a foundation model
(e.g., a vision-language model (VLM) pre-trained on web-
scale data) for a target domain. Surprisingly, we find that
zero-shot inference from VLMs like GroundingDINO sig-
nificantly outperforms the state-of-the-art (48.3 vs. 33.1
AP) on COCO. However, such zero-shot models can still be
misaligned to target concepts of interest - trailers on
the web may be different from trailers as defined for a

target application like autonomous vehicles. In this work,
we propose Foundational FSOD, a new benchmark pro-
tocol that evaluates detectors pre-trained on any external
dataset and fine-tuned on K-shots spanning both vision and
language modalities. Further, we note that current FSOD
benchmarks are actually federated datasets containing ex-
haustive annotations for each category on only a subset of
the data. We leverage this insight to propose simple strate-
gies for fine-tuning VLMs with federated losses. We demon-
strate our approach on LVIS and nuImages, improving over
prior work by 5.9 AP.

1. Introduction
Object detection is a fundamental problem in computer

vision [8, 21] that has matured in recent years [22, 24, 30,
31]. Given a large-scale annotated dataset, one can train a
detector from scratch. However, training object detectors
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Figure 2. Poor Alignment Between VLM and Target Concepts. While VLMs show impressive zero-shot performance, they struggle
when the concept of the target class is different from vision-language concepts encountered in web-scale training. On the left, we see that
the nuImages dataset defines the cab of the truck as a separate object concept from its trailer (shown in red), while the zero-shot
VLM predicts the entire vehicle as a truck (shown in green). The right visualizes the actual class definitions given to the nuImages
annotators, provided as both textual descriptions and visual examples. Just as human annotators learn concepts from few-shot multi-modal
vision-language examples, we argue that VLMs should be fine-tuned with K shots spanning such visual and language modalities.

for domains with limited annotated data remains challeng-
ing, motivating the problem of few-shot object detection.

Status Quo. Few-shot object detection (FSOD) bench-
marks have made considerable progress on learning to de-
tect new categories from limited training data. Existing
benchmarks are constructed by partitioning popular object
detection datasets like PASCAL VOC [5] and COCO [21]
into base categories (with many examples per class) and
target novel categories (with few examples per class). De-
tectors are first pre-trained on base classes and are fine-
tuned on K examples (or K-shots) from novel classes.

Conventional FSOD benchmarks enforce base and
novel classes to be disjoint to prevent concept leakage and
measure generalization to unseen categories. However, as
most detectors are pre-trained on ImageNet, concept leak-
age already occurs in contemporary benchmarks. For ex-
ample, cat and person are considered novel in the
COCO FSOD benchmark but are already present in Ima-
geNet. Similarly, car is considered novel even though
similar concepts like sports car and race car are
present in ImageNet. Because concept leakage is difficult to
avoid, we take the view that it should instead be embraced.
Intuitively, pre-training on large-scale diverse base cate-
gories (which may overlap with novel concepts) will ulti-
mately improve generalization to novel classes.

Foundational FSOD. Rather than explicitly filtering
target classes from pre-training [3, 12, 49], practitioners
will likely employ foundational vision-language models
(VLMs) pre-trained on (potentially private) web-scale data
[14, 20, 32, 34] and fine-tune them for their task. As VLMs’
pre-training datasets contain diverse concepts [20, 29]1, it is

1The CLIP [29] pre-training dataset contains 500,000 concepts, span-
ning many categories encountered in the real world.

challenging to prevent concept leakage. Therefore, one may
be hesitant to exploit VLMs for FSOD. But the performance
of such foundational models is undeniable; state-of-the-art
VLMs like GroundingDINO already dominate all leading
FSOD methods on COCO (48.3 vs. 33.1 AP) without fine-
tuning (cf. Table 1).

Multi-Modal Concept Alignment. Does the strong
zero-shot performance of VLMs imply that few-shot detec-
tion is no longer an interesting problem? No! We find that
the target class name is often an insufficient description of
the target concept. For example, trailers in nuImages
are defined differently than trailer in web-scale data.
Fig. 2 shows the annotator instructions used to “align” hu-
man annotators to subtle aspects of the target concept [2].
Interestingly, such instructions are naturally multi-modal,
often including a few visual examples and textual descrip-
tions. We advocate for a FSOD setup that uses similar visual
and language cues for VLM concept alignment. We refer to
our proposed setup as Foundational FSOD (Fig. 1).

Federated Few-shot Learning. In order to effectively
align VLM concepts with K-shot multimodal “instruc-
tions”, we leverage a simple but evidently underappre-
ciated observation: K-shot object detection datasets are
actually federated datasets [11]. A federated dataset is
a dataset comprised of smaller subsets, where each sub-
set is exhaustively annotated for only a single category.
For example, cars may or may not appear in the back-
ground of the K images annotated with motorcycles
(see Fig. 3). However, existing FSOD methods incor-
rectly assume that no cars are present in the background
of non-car images. Inspired by prior work in learning
with federated datasets [47] and weakly-supervised learn-
ing [15, 38, 39], we demonstrate that fine-tuning VLMs

https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuimages.md
https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuimages.md


with federated losses consistently improves over zero-shot
inference (cf. Tables 2, 4).

Contributions. We present three major contributions
1. We modernize the FSOD benchmark by embracing

vision-language foundation models that are pretrained
on internet-scale data. We highlight the practical chal-
lenge of using multi-modal few-shot examples to define
the target semantic concept (as shown in Fig. 2).

2. We point out that existing FSOD benchmarks are actu-
ally federated datasets, and present simple strategies for
fine-tuning VLMs to align concepts for solving FSOD.

3. We conduct extensive experiments to ablate our de-
sign choices and demonstrate that our simple method
achieves state-of-the-art results on the LVIS and nuIm-
ages Foundational FSOD benchmarks.

2. Related Works

Few-Shot Object Detection aims to detect new object
categories given limited training data [16]. Recent work
explores two primary approaches: meta-learning and trans-
fer learning. Meta-learning-based methods focus on ac-
quiring generalizable features from a set of base classes,
which can then be applied to identify novel classes. For ex-
ample, [13] proposes a technique that re-weights features
from base classes to predict novel classes. [42] proposes a
framework addressing both few-shot object detection and
few-shot viewpoint estimation. [6] introduces a general
FSOD network that learns a matching metric between im-
age pairs, while [40] enhances object features using a uni-
versal prototype. More recently, [44] proposes a generative
approach that is robust to noisy object proposals for novel
classes. In contrast, transfer learning involves freezing the
network weights pretrained on a base dataset to improve
a model’s ability to generalize to novel classes with lim-
ited data. Transfer learning approaches often follow a two-
stage fine-tuning strategy: first train on the base classes
and then fine-tune the box classifier and regressor with K-
shots from novel classes. This strategy historically out-
performed meta-learning approaches [37]. Recent work has
primarily focused on improving classification performance.
FSCE [35] utilizes a contrastive proposal encoding loss to
encourage instance-level intra-class compactness and inter-
class variance. Similarly, [19] applies a class margin loss to
balance inter and intra-class margins. Our approach lever-
ages transfer-learning by fine-tuning vision-language mod-
els (VLMs) pre-trained on large-scale datasets.

Vision Language Models are trained on a large-scale
set of image-text pairs collected from the web. These mod-
els embed images and text into a shared space, enabling
open-vocabulary detection. Early works adapt VLMs for
object detection by either distilling the model’s predictions
for specific image regions [9, 10] or directly incorporat-

ing detection components into frozen [17] or fine-tuned
[4, 26, 27] encoders. In contrast, RegionCLIP [46] employs
a multi-stage training approach, which involves generat-
ing pseudo-labels from captioning data, conducting region-
text contrastive pre-training, and fine-tuning on detection
data. GLIP [20] uses a single text query for the entire
image and frames detection as a phrase grounding prob-
lem. Detic [48] addresses long-tail detection performance
by leveraging image-level supervision. In the context of
open-vocabulary detection, there may be some overlap be-
tween the object categories seen during training and those
in testing. We use the term “zero-shot inference” to signify
that a model has never been trained on the target dataset.

Federated Datasets are constructed by combining
smaller datasets, each resembling a conventional object de-
tection dataset for a single category [11]. Each of these
smaller datasets ensures exhaustive annotations for a spe-
cific category. Images within each smaller dataset may
overlap, resulting in some images with exhaustive anno-
tations for multiple categories. Importantly, since exhaus-
tive annotations for a particular category are only guaran-
teed within each small dataset, most images are sparsely
annotated. Consequently, naively training models with fed-
erated datasets leads to much sparser gradients [36]. To ad-
dress this challenge, CenterNet2 [47] introduced FedLoss, a
simple modification of cross-entropy loss which randomly
samples a subset of negative categories for each image. We
adopt FedLoss for FSOD, achieving consistent improve-
ments over zero-shot inference.

Weakly Supervised Learning techniques are especially
popular when learning in data-constrained settings, leverag-
ing large-scale noisy annotations to improve model perfor-
mance. Prior works [15] learn from noisy annotations using
negative labels for classification. Further, [18, 43] leverage
pseudo-labels for self-training. We modify our fine-tuning
approach to leverage negatives derived from pseudo-labels
to improve FSOD performance.

3. FSOD with Vision-Language Models
As shown in Fig 1, our proposed Foundational FSOD

benchmark uses vision-language models (VLMs) pre-
trained on diverse, large-scale datasets prior to fine-tuning
on K-shots per C target classes. We contrast our proposed
setup with the standard FSOD benchmark, demonstrate
that FSOD benchmarks are actually federated datasets, and
present simple strategies for fine-tuning VLMs below.

3.1. Foundational FSOD Benchmark

Existing FSOD benchmarks repurpose well-established
datasets like PASCAL VOC [5] and COCO [21] by parti-
tioning them into base and novel classes for pre-training
and fine-tuning, respectively. For COCO, the 60 categories
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Figure 3. Identifying Negative Pseudo-Labels. The left visualizes the standard K-shot detection setup, which we argue is actually a
federated dataset [11] where one is given multiple mini-datasets of K images. In this case, we visualize two K = 1 datasets of bus and
motorcycle. Importantly each mini-dataset does not provide information about the presence of other objects. Previous FSOD methods
apparently ignore this fact, and instead assume the collective set of few-shot images are fully annotated across all object classes. This
will likely produce many incorrect negative labels – e.g., all unlabeled cars in the background of the motorcycle mini-dataset will be
incorrectly treated as negative cars. We use a ✓ to denote that a given image will be treated as a negative example of a given class by the
learner and a ✗ to denote that a given image will be ignored when learning a given class. We color such negative labels as green when
correct and red when incorrect. Naive FSOD approaches learn about all classes from all images, which results in many incorrect negative
labels (shown in red on the left). Instead, we embrace the partially-labeled nature of the data and exploit tools from weakly-supervised
learning, such as the use of psuedo-labels predicted by a teacher. We train (or rather, fine-tune) initial detectors on only the appropriate
mini-dataset and use thresholded psuedo-detections (shown as cyan boxes on the right) to find images that can be confidently treated as
(pseudo) negatives, which results in much fewer mistakes (shown in red on the right). This in turns produces improved performance. We
also attempted to learn from psuedo positive labels, but found these to be less reliable. We include pseudo-code in the supplement.

disjoint with PASCAL VOC are used as base classes and
the remaining 20 are used as novel classes [37]. How-
ever, this setup is artificial and does not reflect how FSOD
is deployed in practice. First, it requires FSOD methods to
detect common categories such as car and person by as-
suming they have only few examples. Importantly, VLMs
like GroundingDINO [23] can already detect common cat-
egories with high accuracy without fine-tuning on COCO
(cf. Table 1). Therefore, we focus on benchmarking Foun-
dational FSOD on more realistic and challenging datasets
like LVIS and nuImages. In addition, existing FSOD bench-
marks require that datasets are partitioned into base and
novel classes, which is not feasible for large-scale (of-
ten private) foundational datasets. For example, although
CLIP’s [29] model weights are publicly available, its pre-
training dataset is not. Instead, FSOD methods should only
fine-tune VLMs on K-shot annotations for C target classes,
and also evaluate performance on these C classes.

3.2. Few-Shot Multi-Modal Concept Alignment

Although VLMs achieve strong zero-shot performance
on common classes, they struggle when the concept of the
target class is different from vision-language concepts en-
countered in web-scale training (cf. Fig. 2). For example,
nuImages [1] defines trailer as independent from the
truck cab. However, Detic jointly detects the truck cab and

its trailer together. This fine-grained distinction is provided
to human annotators with visual examples and textual de-
scriptions. Similarly, we provide a few multi-modal exam-
ples for each class to align VLMs with dataset annotations.

We start by fine-tuning Detic [48] on the provided K-
shot examples. We ablate the impact of freezing different
parts of Detic in Table 5 and find that freezing the backbone,
RPN, and classifier head with CLIP embeddings yields the
best performance (cf. Figure 4). Due to the sparsely an-
notated nature of the FSOD task, we posit that the model
will receive sparser gradients which degrades the object de-
tector’s performance because all unannotated objects in the
image would be treated as negatives [36]. Therefore, we
explore three strategies for handling negatives as described
below.

3.3. FSOD Benchmarks are Federated Datasets

Prior works follow the K-shot dataset creation process
established by [37]. To construct a K-shot dataset, we se-
lect a target class C and an image at random. If the total
annotations for class C in the image are less than or equal
to K, we add the image to our dataset. We repeat this pro-
cess for all classes until we have exactly K annotations per
class. Importantly, each image in the dataset is exhaustively
annotated for a subset of all classes. Recall, a federated
dataset is also comprised of images that are exhaustively



annotated for a specific category. This suggests that we can
leverage insights about federated datasets [11, 47] and train
better few-shot object detectors.

Fine-Tuning with FedLoss. We fine-tune Detic with
Federated Loss (FedLoss) [47] using a subset S of classes C
for each training image. Specifically, we use a binary cross-
entropy loss on all classes in S and ignore classes outside of
S during training. S is comprised of the ground-truth anno-
tation class along with randomly sampled negative classes
for each image. We sample these negative classes in pro-
portion to their square-root frequency in the training set.
We find that probablistically sampling negatives rather than
labeling all unannotated classes as negatives improves fine-
tuning results, reliably beating zero-shot performance. Im-
portantly, although FedLoss has been explored in the con-
text of long-tailed detection, applying it to FSOD provides
considerable performance improvements, reaffirming that
FSOD benchmarks are actually federated datasets.

Fine-Tuning with Inverse FedLoss. However, we note
that FedLoss samples common classes like car more fre-
quently as negatives, hurting detection accuracy for long-
tailed datasets like LVIS and nuImages. Instead, we pro-
pose Inverse FedLoss (InvFedLoss), a minor modification
of FedLoss that samples negative categories in proportion
to the inverse of their square root frequency. This ensures
that we sample rare categories as negatives more frequently
to better match the true data distribution. Leveraging this
insight improves over just using FedLoss and naive fine-
tuning.

Fine-Tuning with Pseudo-Negatives. Despite the effec-
tiveness of InvFedLoss, probablistically sampling negatives
using dataset-wide statistics is sub-optimal because it does
not consider the content of each image. We can improve the
accuracy of sampled negatives with pseudo-labels to deter-
mine which classes are likely not in a particular image. If
the maximal score for any class prediction is less than a
threshold, we consider this class to be a negative. Using
image predictions to identify pseudo-negatives yields better
results than simply using dataset-wide statistics. We present
pseudo-code in the supplement.

4. Experiments

We conduct extensive experiments to validate that zero-
shot inference from VLMs significantly improves over
state-of-the-art FSOD approaches, suggesting that exist-
ing benchmarks should be re-framed to include founda-
tion models. Moreover, we demonstrate that using feder-
ated losses consistently improve fine-tuning performance
on LVIS and nuImages. Lastly, we analyze the upper bound
performance and ablate the impact of freezing different de-
tector components on fine-tuning performance. We will re-
lease our code and data splits to foster future Foundational

Table 1. VLM Zero-Shot Inference Is a Strong FSOD Baseline.
Zero-shot inference with VLMs like GroundingDINO resound-
ingly outperform state-of-the-art FSOD methods on the COCO
FSOD benchmark, motivating the need to re-frame FSOD to em-
brace foundation models.

Approach 30-shots
AP bAP nAP

FRCN-ft-full [45] 18.6 20.6 12.5
FRCN-BCE [45] 30.2 36.8 10.3
TFA w/ fc [37] 29.3 34.5 13.5
TFA w/cos [37] 29.9 35.3 13.6
MPSR [41] 17.1 18.1 14.1
Meta-RCNN [45] 7.8 7.1 9.1
FsDetView [42] 10.0 9.3 12.0
Retentive R-CNN [7] 32.9 39.3 13.8
DiGeo [25] 33.1 39.4 14.2

GroundingDINO (Zero-Shot) [23] 48.3 46.3 54.3

FSOD research.
Datasets and Metrics. We repurpose two established

datasets for Foundational FSOD:

• LVIS [11] re-annotates COCO images using 1,230 fine-
grained classes, which are divided into frequent, common
and rare based on the cardinality of each class. Frequent
and common classes are combined to form LVIS-base
and is used for pre-training. Rare classes are used for
LVIS-novel. Following [25, 37], we benchmark with
LVIS v0.5 on publicly released data splits and report per-
formance across the frequent, common, and rare groups
(APf , APc, APr) on the LVIS val-set.

• nuImages [1] annotates 18 classes, which are divided
into groups with many, medium, and few examples [28]
and report AP for each cohort. Although this dataset is not
traditionally used for FSOD, nuImages’ open-world cate-
gories like debris and pushable-pullable make
it particularly challenging (even for VLMs), and is a re-
alistic benchmark for Foundational FSOD. Unlike LVIS,
nuImages is fully annotated, so we construct our Founda-
tional FSOD benchmark using the procedure described in
subsection 3.3.

4.1. Zero-Shot Inference Is A Strong FSOD Baseline

We compare state-of-the-art FSOD methods with zero-
shot inference from GroundingDINO [23] on COCO in Ta-
ble 1. Surprisingly, GroundingDINO outperforms DiGeo
[25] by 16.2% AP averaged across both base and novel
categories despite never being trained on COCO images.
GroundingDINO’s impressive performance is due to its
large-scale multi-modal pre-training on Objects365 [33],
GoldG [14] and Cap4M [20]. It is worth noting that
GroundingDINO achieves higher AP on novel classes
than base, suggesting that novel classes in existing



Table 2. LVIS Foundational FSOD Performance. Detic pre-
trained only on LVIS-base outperforms specialized methods
such as TFA and DiGeo by ∼6 AP, without even seeing the rare-
class data. Importantly these performance improvements can be
attributed to Detic’s CLIP-based classifier and demonstrates how
concept leakage through language can be advantageous in data
constrained settings. Secondly, leveraging our insight that FSOD
benchmarks are actually federated datasets, we show that fine-
tuning with pseudo-negatives improves over standard fine-tuning
by 4.3APr (15.5 vs. 19.8, ResNet-50 backbone). Training with
pseudo-negatives improves fine-tuning performance because we
do not naively assume all classes not labeled in an image are
negatives. Lastly, we note that simply swapping the ResNet-50
backbone to Swin-B significantly improves performance (with-
out modifying training data). Notably, we find Detic’s rare class
performance improves over fine-tuning by 5.9APr (from 26.7
AP to 32.6 AP). All the methods in this table are pre-trained on
LVIS-base.

Approach 10-shots
AP APf APc APr

ResNet-50 Backbone

TFA w/ fc [37] 24.1 27.9 23.9 14.9
TFA w/ cos [37] 24.4 27.7 24.3 16.9
DiGeo [25] 24.9 28.5 24.6 17.3

Detic (Base Only) [48] 30.0 34.4 30.8 16.3
+ Fine-Tuning (Base + Novel) 30.0 33.2 31.9 15.5
w/ FedLoss 30.8 33.9 32.7 17.4
w/ InvFedloss 31.1 34.3 32.5 18.7
w/ Pseudo-Negatives 31.6 34.8 32.8 19.8

Swin Backbone

GroundingDINO (Zero-Shot) [23] 2 27.4 32.7 23.3 18.1

Detic (Base Only) [48] 35.2 38.7 36.8 21.4
+ Fine-Tuning (Base + Novel) 35.9 37.1 37.8 26.7
w/ FedLoss 36.5 36.7 38.3 30.4
w/ InvFedloss 37.1 37.8 38.5 31.1
w/ Pseudo-Negatives 37.2 37.7 38.2 32.6

benchmarks are actually not rare in the real world. There-
fore, FSOD benchmarks should be re-framed to reflect real-
world applications.

4.2. Foundational FSOD with LVIS

In this section, we evaluate GroundingDINO [23] and
Detic’s [48] performance on the LVIS Foundational FSOD
benchmark. Note that we only report GroundingDINO’s
zero-shot inference results because the authors have not re-
leased training code at the time of this submission. We train
Detic from scratch on LVIS-basewith a ResNet-50 back-
bone for fair comparison with prior work [25, 37].

As shown in Table 2, Detic outperforms all recent FSOD
baselines including DiGeo [25] by about ∼6 points on APc

and APf and achieves 16.3 APr without ever seeing any
rare class data (e.g by prompting Detic (Base only) with
the rare class names). Importantly, these performance im-
provements can be attributed to Detic’s CLIP-based classi-
fier, which has been trained with significantly more than K

Table 3. nuImages Foundational FSOD Performance. We re-
purpose nuImages for FSOD following the dataset creation pro-
cess established by [37]. We group categories by frequency into
cohorts with many, medium and few examples per class (ac-
cording to the fully-annotated dataset) [28]. We fine-tune De-
tic pre-trained on LVIS, COCO and ImageNet-21K on K exam-
ples for each of the 18 nuImages classes. We observe that prior
FSOD methods like TFA perform poorly on nuImages(< 3AP).
But we drastically improve performance if we upgrade TFA ac-
cording to our proposed setup: by increasing pre-training data
and leveraging language cues. Interestingly, accuracy across car-
dinalities decreases despite all classes being trained with K exam-
ples. This suggests that despite pre-training on web-scale datasets,
VLMs still struggle to detect rare categories like strollers,
pushable-pullable, and debris, highlighting the chal-
lenge of working with nuImages.

Approach Average Precision (AP)
All Many Medium Few

GroundingDINO (Zero-Shot) [23] 11.44 17.42 16.13 3.38
Detic (Zero-Shot) [48] 14.26 27.28 16.88 2.36

5-shots

TFA [37] w/ COCO-base 1.33 2.78 1.43 0.23
TFA [37] w/ LVIS-base 2.02 1.69 4.08 0.58
TFA [37] w/ LVIS,IN-21K, 14.77 25.16 18.65 3.63
COCO + CLIP Classifier
Ours 15.94 28.47 19.53 3.50

10-shots

TFA [37] w/ COCO-base 1.21 2.55 1.19 0.31
TFA [37] w/ LVIS-base 2.27 2.05 4.51 0.58
TFA [37] w/ LVIS,IN-21K, 15.53 26.01 19.93 3.88
COCO + CLIP Classifier
Ours 16.67 29.15 20.66 3.90

30-shots

TFA [37] w/ COCO-base 1.14 2.81 0.84 0.23
TFA [37] w/ LVIS-base 2.23 1.48 4.98 0.45
TFA [37] w/ LVIS,IN-21K, 16.83 27.90 21.59 4.45
COCO + CLIP Classifier
Ours 17.87 30.32 22.35 4.70

examples of each class. This highlights the role of language
in data-constrained settings.

Further, fine-tuning Detic with pseudo-negatives im-
proves rare class performance by 1.6% (30.0 vs 31.6) over
naive fine-tuning. Finally, we note that simply replacing the
ResNet-50 backbone with a Swin-B model yields a massive
12.8 AP improvement for rare classes (19.8 vs. 32.6).

4.3. Foundational FSOD with nuImages

In the context of foundational models, we argue that par-
titioning datasets into base and novel classes no longer
makes sense. Instead, FSOD methods should only train on
K-shot annotations for C target classes, and also evaluate
performance on these C classes. We fine-tune Detic, pre-
trained on LVIS, COCO and ImageNet-21K, on K exam-

2GroundingDINO is only pre-trained on Objects365, GoldG and
Cap4M
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Figure 4. Multi-Modal Fine-Tuning Improves Concept Alignment. While VLMs demonstrate strong zero-shot capabilities, they strug-
gle when the concept of the target class is different from VLM concepts encountered in web-scale training. Specifically, we find that
GroundingDINO [23] (left) and Detic [48] (center) struggle to detect open-world categories like pushable-pullable. Fine-tuning
Detic (right) with federated losses improves VLM concept alignment. Note that red boxes represent ground-truth annotations and green
boxes are predictions by their respective models.

ples per class and highlight model performance in Table 3.
Since the specific K examples can have a significant impact
on the overall performance, we run each experiment over
10 random data splits and report the average. As expected,
detection accuracy improves as we add more training exam-
ples. Despite large-scale pre-training, we see low accuracy
for classes with few examples, highlighting the difficulty
of the nuImages dataset.

High intra-class variance for categories such as debris
makes it difficult to generalize given few examples. Ac-
cording to nuImages’ annotation instructions, debris can
include anything that is too big to be safely driven over,
including fallen tree branches and trash bags. Similarly
pushable-pullable includes trash cans, luggage, dol-
lies, wheel barrows, and shopping carts.

To contextualize our results, we evaluate TFA [37] on the
nuImages Foundational FSOD benchmark. We train two
variants of TFA trained on COCO-base and LVIS-base
and fine-tune both models on K examples of the nuImages
classes. Surprisingly, both variants of TFA achieve less than
3 AP (Table 3). We posit that this is largely due to poor
classification performance. Since both LVIS and COCO
classes do not significantly overlap with nuImages classes,
learning a classifier from few examples is extremely diffi-
cult. However, we find that simply re-training TFA with a
frozen CLIP-based classifier (similar to Detic) dramatically
increases performance, reiterating the utility of language
and web-scale pre-training in data-constrained settings.

4.4. Oracle Performance Analysis

To further contextualize our results, we compute upper
bounds when given access to ground-truth negatives and
exhaustive annotations for the few-shot data split. Recall,
nuImages is exhaustively annotated, but is repurposed for
Foundational FSOD in our work.

To compute the set of ground-truth negatives, we use ex-
haustive ground-truth annotations to determine which cat-
egories are not present for each image. Note that this in-
formation doesn’t exist in LVIS because its ground-truth is
sparsely annotated. Training with ground-truth negatives
provides an upper bound on our pseudo-negatives experi-
ment. Next, we train using exhaustive ground-truth anno-
tations to provide an upper bound for the specific set of
images used during training. In addition, this experiment
highlights the performance gap between having exhaustive
negatives and exhaustive annotations.

Table 4 shows that using pseudo-negatives nearly
matches the true negative upper bound (16.67 AP vs 16.99
AP). This demonstrates that we are able to reliably es-
timate negatives in an image, alleviating the problem of
learning with sparse annotations. Training with exhaus-
tive annotations yields significantly better results for many
and medium classes. This is unsurprising because 10-shot
FSOD includes 10 car annotations and exhaustively anno-
tating the same images include over 550 car annotations!

Despite strong performance on classes with many and
medium, the upper bound for classes with few examples
remains low (4.21 AP and 3.93 AP). We posit that it is very
hard to capture the correct semantics of nuImages’ rare cat-



Table 4. Analysis of nuImages Upper Bound Performance.
We compare the accuracy of our proposed approach against up-
per bounds computed for the FSOD task. Our pseudo-negatives
strategy approaches the performance of using ground-truth neg-
atives, showing that pesudo-labels can provide a reliable signal
about negatives, especially across classes with many and medium
examples. The performance gap between our best method and ex-
haustive annotations can be attributed to the large number of extra
annotations, particularly for classes with many and medium ex-
amples. Compared to the baseline (14.3 AP), our approach (16.7
AP) closes the gap to the (18.5 AP) upperbound by over 50%.

Approach 10 Shots: Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) [48] 14.26 27.28 16.88 2.36

+ Fine-Tuning 15.53 26.01 19.93 3.88
w/ FedLoss 15.57 27.20 20.09 2.89
w/ Inverse FedLoss 15.89 27.56 20.19 3.42
w/ Pseudo-Negatives 16.67 29.15 20.66 3.90

w/ True Negatives (Oracle) 16.99 29.60 20.93 4.21
w/ Exhaustive Annotations (Oracle) 18.51 33.51 22.35 3.93

egories only using K-shots. We observe similar trends for
the 5 and 30-shot cases and present further analysis in the
supplement.

Given the success of training with pseudo-negatives, a
natural next-step is to train with pseudo-positives. Our pre-
liminary results suggest that incorporating pseudo-positives
does not provide significant improvement over simply train-
ing with pseudo-negatives. We posit that training with in-
correct pseudo-positives may incur a higher penalty than
training with incorrect pseudo-negatives. This is a promis-
ing direction for future work.

4.5. Fine-Tuning Ablation

We explore different fine-tuning strategies for training
Detic with few-shot annotations. We broadly divide De-
tic’s architecture into four components: Backbone, Region
Proposal Network (RPN), Box Regressor, and Classifier.
We ablate the impact of freezing different components and
present results in Table 5.

Intuitively, as we have limited training data, we attempt
to fine-tune a minimal number of parameters. Initializing
and freezing the classifier head with CLIP embeddings cor-
responding to class names provides the most significant im-
provement. Prior works that fine-tune vision-only models
have no notion of language embeddings and therefore must
train classifiers from scratch. In contrast, Detic can repre-
sent concept names using CLIP embeddings and can more
easily adapt to novel categories with few examples. We
find that freezing the backbone, RPN and classifier head
with CLIP embeddings, and training the classifier projec-
tion layer and box regressor performs the best. Importantly,
as Detic has been trained on large-scale datasets, its RPN
can easily localize novel objects without fine-tuning.

Table 5. Detic Fine-Tuning on nuImages. � denotes freezing
parameters and - implies fine-tuning all parameters. The Detic
classifier consists of a fully connected projection layer followed
by a classifier head. CLIP signifies using CLIP embeddings for
the classifier head and only training the classifier projection layer.
We find that freezing the backbone and RPN and initializing the
classifier head with CLIP embeddings performs the best.

Detic Components 10 Shots: Average Precision (AP)
Backbone RPN Box Regressor Classifier All Many Medium Few

- - - - 12.11 19.41 18.44 0.87
� - - - 12.37 21.20 17.66 0.91
� - - CLIP 15.08 22.88 20.99 3.78
� � - - 11.63 21.65 15.42 0.83
� � - CLIP 15.37 26.93 19.73 2.83
� � � - 10.66 18.54 15.53 0.56
� � � CLIP 15.31 26.83 19.58 2.89

4.6. Limitations and Future Work

Despite using VLMs pre-trained on large-scale datasets,
we find that performance for rare categories (as defined by
the cardinality of each class in the original dataset) is con-
siderably lower than for common classes. We posit that
VLMs are pre-trained with imbalanced data which includes
many examples of common categories like truck but few
examples of rare categories like stroller. Our work
does not explicitly improve detection performance on the
rare classes. Interestingly, since VLMs like Detic [48],
GLIP [20], and GroundingDINO [23] are trained with dif-
ferent data sources, each model has dramatically different
zero-shot performance on novel categories like stroller.
Ensembling predictions from different VLMs may yield
better detection accuracy for rare categories. In addition,
although our work motivates the use of rich textual descrip-
tions for multi-modal alignment, our approach only uses
class names as text features. We hope future work can ad-
dress the above limitations.

5. Conclusion

We revisit few-shot object detection (FSOD) with vision-
language models (VLMs) and find that zero-shot inference
from web-scale VLMs significantly outperforms leading
FSOD methods. But importantly, such foundational mod-
els do not fully address few shot recognition because of
the concept alignment problem; particular concepts in tar-
get applications may be different than their use on web-
scale datasets. Just as human annotators require concept
alignment via multimodal text and visual examples, we ar-
gue that VLMs should be aligned with such few-shot data,
formalizing the problem of Foundational FSOD. We also
point out that existing FSOD benchmarks are actually feder-
ated datasets, and demonstrate that federated losses improve
Foundational FSOD performance, approaching the oracle
upper bound where few-shot images are fully annotated.
Our analysis suggests that future few-shot (or “foundational
concept alignment”) benchmarks may benefit from assum-



ing images are fully annotated, since the cost of annotating
a small set of K images is manageable in practice.
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A. Implementation Details

Pseudo-Negative Federated Loss. First, we sample an
image at random. We start by running a pre-trained detec-
tor on the image to generate predictions. We partition the
predictions into two groups based on a confidence thresh-
old; all predictions above the threshold are pseudo-positives
(pseudo pos), all predictions below the threshold are ig-
nored. Next, we compute negative classes (neg classes)
based on the pseudo-positives. Specifically, all classes not
included in the psuedo-positive predictions are considered
negative classes. Following the federated loss described in
[47] (modified to use neg classes instead of randomly
sampled negative classes), we compute the binary cross en-
tropy loss for the negative (neg classes) and ground
truth classes. See Algorithm 1 for pseudo-code.

Algorithm 1: Psuedo-Negative Federated Loss

# Inputs
# img: Randomly Sampled Image
# all_classes: All Classes in Dataset
# gt: Ground Truth Annotations for img
# gt_classes: List of Classes in gt
#
# Outputs
# loss: Psuedo-Negative Federated Loss
#
# Functions
# filter: Returns All Predictions w/
# Confidence > Threshold
# get_neg: Returns List of Classes Not
# In Pseudo-Positives
# or: Set Union Operation
# BCE: Binary Cross Entropy Loss

#Step 1: Compute Predictions
# and Filter by Confidence
pred = Detector(img) # predictions
pseudo_pos = filter(pred, thresh=0.2)

#Step 2: Get Pseudo-Negatives for Image
neg_classes = get_neg(pseudo_pos, all_classes)
select_classes = or(neg_classes gt_classes)

#Step 3: Compute Deterministic Federated Loss
# w/ Pseudo-Negatives
loss = 0
for cls in select_classes:

pred_cls = pred[cls] #predictions for cls
gt_cls = gt[cls] #ground-truth for cls

loss += BCE(pred_cls, gt_cls)

return loss

LVIS v0.5 Experiment Details. We select Detic with
a Resnet-50 backbone for fair comparison with prior work.
We pre-train Detic on LVIS-base for 90k iterations with

a batch size of 32 using an AdamW optimizer and a learning
rate of 2e− 3. All images are resized to 640× 640 and we
also enable Repeat Factor Sampling [11].

Following [37], we sample up to 10 shots for each class
in LVIS (since all classes may not have 10 examples). We
use a batch size of 32, learning rate of 2.5e − 5 for 46k
iterations. We do not use Repeat Factor Sampling for fine-
tuning. We sample 50 categories for each training image, i.e
|S| = 50 for the FedLoss and InvFedLoss experiments. We
derive negatives from pseudolabels with atleast 20% confi-
dence for the Psuedo-Negative experiment.

nuImages Experiment Details. We select Detic
with a Swin-T backbone pre-trained on LVIS+COCO and
ImageNet-21k data. We use an image size of 1600 × 900,
batch size of 8 and an AdamW optimizer with learning rate
of 3.75e − 6. We fine-tune this model for 8000 iterations
on nuImages. We sample 6 categories for each training im-
age, i.e |S| = 6 for the FedLoss and InvFedLoss experi-
ments. We derive negatives from pseudolabels with atleast
20% confidence for the Psuedo-Negative experiment.

The original Detic implementation samples |S| cate-
gories per batch, rather than per image. This works for
LVIS, which has 1200 categories. However, nuImages only
has 18 classes, which required re-implementing the nega-
tive category sampling step for each image.

B. Analysis of Iconic Few-Shot Images

The specific examples used during few-shot fine-tuning
significantly impacts target class performance [37]. How-
ever, prior work constructs few-shot splits by randomly
sampling K examples per class. In contrast, when creat-
ing annotator instructions, selecting the right examples to
“align” human annotators [2] to subtle aspects of the tar-
get concept is carefully considered. To more closely match
VLM concept alignment with human annotator alignment,
we design a simple algorithm to construct the best K-shot
split for fine-tuning. This allows us to understand which ex-
amples are most informative and measure an upper bound
in performance.

We construct our best split by picking examples corre-
sponding to the best class-wise performance, based on the
evaluation of each split on a held-out validation set. For
instance, out of 10 random splits for the 5-shot task, one
may pick car examples from split 1, bicycle from split
4 and debris from split 8. In Table 6, we observe that
the best-split performance is always better than its random
counterpart. As expected, the choice of examples in 5-shot
case is more important than the 30-shot case (1.63 AP dif-
ference for 5-shot vs 0.08 AP for 30-shots). We visualize
the difference in the splits for the stroller class in nuImages
(See Figure 5). Unsurprisingly, iconic examples are large
and unoccluded.
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5-shot Strollers

Figure 5. Visualizing Random and Best Split. In the top row, we visualize the 5-shot training examples of strollers from a random split.
Similarly, we visualize the 5-shot training examples for the best split in the bottom row. We observe that strollers in the random split are
often occluded, small in size and are blurry, making few-shot learning harder. On the other hand, the best split examples are larger, have
better visual quality and are relatively un-occluded. This visual difference directly translates into better few-shot performance. We achieve
13.09 Stroller AP for the random split and 18.54 Stroller AP for the best split. We perform a more comprehensive evaluation in Table 6.

Table 6. Random Split vs ‘Best” Split. We construct the “best”
split by selecting per-class few-shot examples that lead to the high-
est performance on a held out set. Unsurprisingly, the best split
performs better than any random split, especially for very lim-
ited data settings (e.g. 5-shot detection). This evaluation setting
closely mimics how human annotators “align” to target concepts,
since annotator guides are constructed using hand-picked iconic
visual examples.

Approach Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) [48] 14.26 27.28 16.88 2.36

5-shots

Ours (Random Split) 15.94 28.47 19.53 3.50
Ours (Best Split) 17.57 29.99 20.70 4.92

10-shots

Ours (Random Split) 16.67 29.15 20.66 3.90
Ours (Best Split) 17.51 29.98 21.60 4.58

30-shots

Ours (Random Split) 17.87 30.32 22.35 4.70
Ours (Best Split) 17.95 29.50 22.69 4.85

C. nuImages Foundational FSOD Perfor-
mance for K={5, 30} Shots

We observe similar trends for K = {5, 30} to the 10-
shot performance reported in the main paper. Note that the
reported results are averaged over 10 seeds to reduce vari-
ance.

For K = 5 shots, we note that naive fine-tuning barely
improves the overall AP (cf. Table 7). Incorporating
pseudo-negatives in this data-scarce setting closes the gap
to the true negatives upper bound (15.94 vs 16.15 AP). Even

Table 7. Analysis of 5-shot Performance on nuImages. Fine-
tuning with pseudo-negatives improves over naive fine-tuning. Im-
portantly, our pseudo-negative approach nearly matches the up-
per bound with true negatives (15.94 AP vs 16.15 AP). This sug-
gests that our proposed approach is particularly effective in data-
constrained settings.

Approach 5 shots: Average Precision (AP)
All Many Medium Few

Detic [48] Zero-Shot 14.26 27.28 16.88 2.36

+ Fine-tuning 14.77 25.16 18.65 3.63
w/ FedLoss 15.03 26.41 19.07 3.03
w/ Inverse FedLoss 15.21 26.77 19.01 3.29
w/ Pseudo-Negatives 15.94 28.47 19.53 3.50

w/ True Negatives (Oracle) 16.15 29.00 19.52 3.70
w/ Exhaustive Annotations (Oracle) 17.59 32.66 20.93 3.43

with exhaustive annotations, we only improve by ∼ 3.3 AP
(14.26 vs 17.59 AP) points over the zero-shot results.

Naive fine-tuning improves over zero shot results by
∼ 2.5 AP (16.83 vs 14.26 AP) in the K = 30 shot setting.
In addition, we see diminishing benefits for using FedLoss
variants (cf. Table 8). Nevertheless, pseudo-negatives im-
prove over naive fine-tuning by 1 AP (16.83 vs 17.87 AP).
Unsurprisingly, performance for classes with many exam-
ples increases the most (19.40 AP) when training with ex-
haustive annotations. Importantly, training with exhaustive
annotations uses orders of magnitude more examples (1300
examples of carcar) than with few-shot annotations (30 ex-
amples of car).

D. RegionCLIP Experiments

In this section, we evaluate the importance of using box
supervised data in pre-training. Unlike Detic, which trains
on box-supervised data from LVIS, COCO and image-text



Table 8. Analysis of 30-shot performance on nuImages Naive
fine-tuning provides a considerable improvement over zero-shot
inference due to a greater number of examples per-class. In con-
strast to 5-shot results, FedLoss variants provide limited improve-
ment over naive fine-tuning. We find that fine-tuning with pseudo-
negatives provides a 1% improvement overall.

Approach 30 shots: Average Precision (AP)
All Many Medium Few

Detic [48] Zero-Shot 14.26 27.28 16.88 2.36

+ Fine-tuning 16.83 27.90 21.59 4.45
w/ FedLoss 16.45 28.88 21.14 3.02
w/ Inverse FedLoss 16.88 29.19 21.41 3.77
w/ Pseudo-Negatives 17.87 30.32 22.35 4.70

w/ True Negatives (Oracle) 18.19 30.61 22.66 5.11
w/ Exhaustive Annotations (Oracle) 19.40 34.24 23.75 4.48

data from ImageNet21-k, RegionCLIP[46] only pre-
trains on image-text pairs from the Conceptual Caption
(CC3M) dataset [34].

We report RegionCLIP’s zero-shot and fine-tuning per-
formance on nuImages averaged over 3 random splits in Ta-
ble 9. Detic zero-shot outperforms RegionCLIP zero-shot
by ∼ 12 AP (14.26 vs 2.34). While fine-tuning Region-
CLIP improves overall performance, Detic achieves higher
accuracy for K = {5, 10, 30} shots. This highlights the im-
portance supervision type (i.e box-supervised data) and data
scale used for pre-training. We find that box-supervised pre-
training yields better down-stream performance on FSOD.

Next, we conduct further analysis to diagnose why Re-
gionCLIP zero-shot inference performs so poorly on nuIm-
ages (Table 10). RegionCLIP relies on an RPN pre-trained
on box-supervised data like LVIS-base to extract regions
for pre-training. Notably, RegionCLIP (w/ LVIS-RPN:
2.34 AP) suffers from poor localization and foreground-vs-
background classification compared to Detic. We validate

Table 9. RegionCLIP Experiments. RegionCLIP zero-shot in-
ference performs much worse than Detic. While fine-tuning im-
proves RegionCLIP’s performance, it still lags far behind Detic.
We posit that this performance difference can be attributed to De-
tic’s box-supervised pre-training and use of language cues from
CLIP embeddings.

Approach Average Precision (AP)
All Many Medium Few

RegionCLIP (Zero-Shot) [46] 2.34 3.33 3.87 0.22
Detic (Zero-Shot) [48] 14.26 27.28 16.88 2.36

5-shots

RegionCLIP (Fine-Tuning) [46] 3.61 6.20 5.14 0.26
Detic (Fine-Tuning) [48] 14.50 24.09 18.53 3.70

10-shots

RegionCLIP (Fine-Tuning) [46] 3.58 6.10 5.16 0.24
Detic (Fine-Tuning) [48] 15.28 26.93 19.89 3.27

30-shots

RegionCLIP (Fine-Tuning) [46] 3.57 6.13 5.10 0.22
Detic (Fine-Tuning) [48] 16.65 27.45 21.51 4.02

Table 10. Diagnosing RegionCLIP’s Poor Zero-Shot Perfor-
mance. RegionCLIP’s zero-shot performance lags far behind
Detic. Using RegionCLIP’s classifier on ground-truth region
proposals yields high performance, suggesting that RegionCLIP
struggles to accuratly localize objects and distinguish between
foreground-vs-background.

Approach Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) [48] 14.26 27.28 16.88 2.36
RegionCLIP (Zero-Shot) w/ LVIS-RPN [46] 2.34 3.33 3.87 0.22

RegionCLIP (Zero-Shot) w/ Detic-RPN [46] 3.79 6.68 3.91 1.12
RegionCLIP (Zero-Shot) w/ Detic-RPN, 0.5 [46] 7.64 12.81 9.57 1.88
RegionCLIP (Zero-Shot) w/ GT-RPN [46] 26.44 45.33 31.83 3.92

this hypothesis by evaluating RegionCLIP (w/ GT-RPN) to
measure classification performance. Surprisingly, Region-
CLIP achieves significantly higher accuracy (26.44 AP),
confirming that RegionCLIP struggles to localize objects
in nuImages. This observation highlights the challenge of
working with nuImages categories, further motivating our
Foundational FSOD benchmark.

Lastly, we evaluate RegionCLIP’s performance with
Detic-RPN. Notably, we observe that the performance
improves over RegionCLIP w/ LVIS-RPN demonstrating
that improving localization quality yields better perfor-
mance. Furthermore, we filter out low confidence Detic
proposals , i.e < 0.5 objectness score (w/ Detic-RPN,
0.5) and find that this doubles RegionCLIP’s zero-shot
performance to 7.64 AP.

E. NuImages Per-Split Breakdown
We provide per-split breakdowns for the nuImage exper-

iments in Tables 11, 12, and 13.



Table 11. 5-shot nuImages Per-Split Performance

Approach Split 1 Split 2 Split 3 Split 4 Split 5
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-tuning 15.07 24.89 18.82 4.58 13.27 20.83 17.54 3.58 15.15 26.55 19.23 2.93 14.82 25.47 19.10 3.20 14.76 23.96 19.45 3.69
FedLoss 15.27 26.59 19.25 3.41 15.08 27.23 18.59 2.80 15.22 26.69 19.34 2.97 14.72 25.42 19.44 2.65 15.03 25.87 19.39 3.01
InvFedLoss 15.36 28.54 18.59 2.77 15.07 28.17 18.04 2.71 15.40 27.91 18.96 2.94 15.04 26.97 18.95 2.80 15.55 28.28 18.93 3.12
Pseudo-Negatives 15.87 28.59 19.06 3.67 15.88 28.70 19.28 3.30 16.12 27.94 20.01 3.84 15.76 28.00 19.65 3.37 16.21 28.43 19.90 3.80

True Negatives (Oracle) 16.27 28.55 19.35 4.56 15.92 29.03 19.24 3.22 15.97 28.81 19.42 3.29 15.92 28.61 19.57 3.41 16.44 28.91 20.1 3.92
Exh. Annotations (Oracle) 17.59 32.63 20.3 3.97 17.71 32.91 21.23 3.31 17.13 32.03 20.42 3.02 17.81 32.86 21.51 3.41 17.72 32.88 20.99 3.48

Approach Split 6 Split 7 Split 8 Split 9 Split 10
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-Tuning 14.94 24.77 19.37 3.84 14.58 25.02 18.26 3.54 15.15 26.56 19.14 3.38 15.39 26.42 18.90 4.20 14.58 27.13 16.73 3.38
FedLoss 15.27 26.30 19.82 3.06 14.88 27.23 18.41 2.59 14.85 25.27 19.68 3.04 15.25 26.40 19.15 3.58 14.79 27.09 17.61 3.16
InvFedLoss 14.65 23.63 19.56 3.67 14.21 23.34 18.73 3.55 14.86 24.71 19.82 3.44 15.74 27.73 19.13 3.97 15.29 28.43 18.19 3.02
Pseudo-Negatives 16.30 27.66 20.89 3.82 15.82 28.69 19.00 3.47 15.82 27.93 20.11 3.28 15.73 29.08 18.95 3.04 15.87 29.67 18.46 3.37

True Negatives (Oracle) 16.46 29.5 20.38 3.43 15.95 29.54 18.94 3.26 16.23 28.4 20.14 4.18 16.52 29.4 19.77 4.12 15.8 29.3 18.31 3.6
Exh. Annotations (Oracle) 18.07 32.93 21.84 3.7 17.41 32.67 20.71 3.17 17.54 32.81 20.77 3.39 17.4 32.45 20.26 3.69 17.54 32.46 21.27 3.14

Table 12. 10-shot nuImages Per-Split Performance

Approach Split 1 Split 2 Split 3 Split 4 Split 5
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-Tuning 15.77 26.63 20.13 3.87 15.31 26.85 19.46 3.03 15.64 27.32 20.08 2.91 15.78 25.16 20.79 4.44 15.93 27.34 20.28 3.60
FedLoss 15.66 27.74 20.05 2.83 15.53 25.71 20.84 3.07 15.62 28.49 19.69 2.43 15.63 27.14 20.31 2.91 15.72 25.22 21.37 3.54
InvFedLoss 15.96 27.22 20.51 3.66 15.80 26.05 20.88 3.54 15.85 28.71 19.97 2.62 16.04 27.43 20.49 3.68 16.26 27.05 21.22 3.80
Pseudo-Negatives 16.78 29.33 20.64 4.14 16.58 29.73 20.53 3.36 16.51 28.95 20.72 3.44 16.95 28.73 21.49 4.12 17.08 29.84 21.22 3.90

True Negatives (Oracle) 16.91 29.67 20.67 4.19 16.92 29.75 21.08 3.73 16.57 29.69 20.38 3.4 17.36 29.96 21.24 4.67 17.52 29.46 22.13 4.61
Exh. Annotations (Oracle) 18.03 33.17 21.33 3.77 18.68 33.98 22.52 3.88 18.3 33.2 22.37 3.45 18.44 33.47 22 4 19.08 33.71 23.36 4.42

Approach Split 6 Split 7 Split 8 Split 9 Split 10
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-Tuning 15.22 23.86 21.10 3.65 15.00 22.86 19.67 5.07 15.67 27.42 19.67 3.55 15.25 25.67 19.61 3.60 15.73 27.02 18.52 5.10
FedLoss 15.79 26.93 21.08 2.82 15.57 27.22 19.76 3.17 15.47 27.98 19.46 2.73 15.32 27.02 19.92 2.44 15.40 28.60 18.45 2.92
InvFedLoss 16.07 27.49 21.09 3.15 15.93 28.80 19.43 3.31 15.69 28.38 19.45 3.04 15.29 25.94 20.12 2.94 15.99 28.50 18.72 4.43
Pseudo-Negatives 16.60 29.51 20.83 3.33 16.50 27.91 20.24 4.82 16.51 29.26 20.61 3.50 16.37 28.86 20.75 3.09 16.82 29.37 19.56 5.27

True Negatives (Oracle) 17.06 29.29 22.12 3.59 16.43 29.9 19.55 3.76 17.04 29.85 20.77 4.46 17.11 29.38 21.48 4.02 16.96 29.04 19.86 5.63
Exh. Annotations (Oracle) 18.62 33.65 23.09 3.45 18.75 33.83 22.2 4.51 17.99 33.11 21.45 3.78 18.33 33.18 22.47 3.51 18.94 33.77 22.67 4.55

Table 13. 30-shot nuImages Per-Split Performance

Approach Split 1 Split 2 Split 3 Split 4 Split 5
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-Tuning 16.71 28.14 21.37 4.14 15.94 26.49 21.04 3.67 16.95 27.73 22.11 4.24 16.33 28.71 20.41 3.52 17.46 28.50 22.64 4.68
FedLoss 16.20 28.86 20.76 2.75 15.48 27.30 20.41 2.31 16.59 28.80 21.71 2.82 16.62 28.85 21.45 3.09 17.15 29.59 21.94 3.53
InvFedLoss 16.47 29.26 20.70 3.28 16.09 27.10 21.52 3.09 16.78 29.52 21.18 3.40 16.97 29.25 21.39 3.90 17.57 29.84 22.14 4.35
Pseudo-Negatives 18.14 30.45 22.33 5.38 17.34 29.24 22.53 3.91 17.90 31.09 22.03 4.42 17.83 30.44 22.34 4.35 18.33 30.78 23.04 4.87

True Negatives (Oracle) 18.34 30.55 22.52 5.68 17.82 29.46 22.89 4.83 17.76 31.09 21.93 4.15 18.36 30.99 22.61 5.18 18.67 31.03 23.59 5.18
Exh. Annotations (Oracle) 19.48 34.22 23.24 5.12 19.43 34.39 23.81 4.47 19.33 34.3 23.97 3.98 19.21 34.18 23.44 4.15 19.6 34.2 24.22 4.62

Approach Split 6 Split 7 Split 8 Split 9 Split 10
All Many Med Few All Many Med Few All Many Med Few All Many Med Few All Many Med Few

Zero-Shot 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36 14.26 27.28 16.88 2.36

Fine-Tuning 16.66 28.51 21.51 3.59 17.30 28.02 21.89 5.53 17.19 27.68 22.42 5.01 17.05 28.11 21.84 4.56 16.68 27.12 20.67 5.57
FedLoss 17.01 28.95 22.57 3.08 16.22 29.48 19.98 3.14 16.46 29.15 21.14 3.03 16.47 29.46 20.89 2.84 16.30 28.33 20.56 3.59
InvFedLoss 17.03 29.64 22.03 3.16 17.36 29.69 21.66 4.60 17.05 29.18 21.90 4.02 16.65 29.73 20.88 3.18 16.82 28.65 20.66 4.77
Pseudo-Negatives 18.08 30.58 23.00 4.39 18.05 30.20 22.37 5.43 17.61 30.47 22.01 4.33 17.87 30.13 22.50 4.64 17.56 29.77 21.34 5.29

True Negatives (Oracle) 17.79 30.57 22.92 3.71 18.44 30.47 22.66 6.07 18.3 30.83 22.72 5.34 18.39 30.74 23.02 5.08 18.07 30.35 21.8 5.88
Exh. Annotations (Oracle) 19.32 34.21 24.33 3.71 19.47 34.47 23.38 4.91 19.4 34.17 23.7 4.66 19.47 34.12 23.94 4.57 19.34 34.17 23.4 4.65
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